
Ad Rotation Hackerrank SolutionAd Rotation Hackerrank Solution

Ad Rotation Hackerrank SolutionAd Rotation Hackerrank Solution

Ad Rotation HackerRank Solution: A Comprehensive GuideAd Rotation HackerRank Solution: A Comprehensive Guide
Are you struggling with the HackerRank Ad Rotation challenge? Feeling overwhelmed by the complexitiesAre you struggling with the HackerRank Ad Rotation challenge? Feeling overwhelmed by the complexities
of optimizing ad delivery for maximum impressions? This comprehensive guide provides a detailedof optimizing ad delivery for maximum impressions? This comprehensive guide provides a detailed
explanation and efficient solution to the Ad Rotation problem on HackerRank, equipping you with theexplanation and efficient solution to the Ad Rotation problem on HackerRank, equipping you with the
knowledge and code to conquer this common algorithmic challenge. We'll break down the problem, walkknowledge and code to conquer this common algorithmic challenge. We'll break down the problem, walk
through the logic step-by-step, and provide optimized code in Python, ensuring you understand not justthrough the logic step-by-step, and provide optimized code in Python, ensuring you understand not just
the answer, but the underlying principles.the answer, but the underlying principles.

Understanding the HackerRank Ad Rotation ProblemUnderstanding the HackerRank Ad Rotation Problem

The Ad Rotation problem typically presents a scenario where you have multiple ads competing for display.The Ad Rotation problem typically presents a scenario where you have multiple ads competing for display.
Each ad has an associated ID and a number of impressions it needs to achieve. The goal is to design anEach ad has an associated ID and a number of impressions it needs to achieve. The goal is to design an
algorithm that efficiently schedules the ads, ensuring that each ad receives its target number ofalgorithm that efficiently schedules the ads, ensuring that each ad receives its target number of
impressions before others that have already reached their targets. This requires careful consideration ofimpressions before others that have already reached their targets. This requires careful consideration of
data structures and algorithmic efficiency to handle large numbers of ads and impressions effectively. Thedata structures and algorithmic efficiency to handle large numbers of ads and impressions effectively. The
challenge often involves dealing with constraints and optimizing for minimal runtime.challenge often involves dealing with constraints and optimizing for minimal runtime.

 1 / 6 1 / 6

https://pdf-library.org/ad-rotation-hackerrank-solution.pdf
https://pdf-library.org/ad-rotation-hackerrank-solution.pdf

Ad Rotation Hackerrank SolutionAd Rotation Hackerrank Solution

Analyzing the Problem: Defining Data Structures and AlgorithmAnalyzing the Problem: Defining Data Structures and Algorithm

Before diving into the code, let's establish a clear understanding of the data structures and theBefore diving into the code, let's establish a clear understanding of the data structures and the
algorithmic approach. We can represent the ads using a data structure like a dictionary or a list of objects,algorithmic approach. We can represent the ads using a data structure like a dictionary or a list of objects,
each containing an ad ID and the remaining impressions required. A priority queue (min-heap) is aneach containing an ad ID and the remaining impressions required. A priority queue (min-heap) is an
exceptionally efficient data structure for this problem. It allows us to quickly access the ad with the fewestexceptionally efficient data structure for this problem. It allows us to quickly access the ad with the fewest
remaining impressions, ensuring that we prioritize ads closest to meeting their targets.remaining impressions, ensuring that we prioritize ads closest to meeting their targets.

The Optimized Python Solution: Using a Min-HeapThe Optimized Python Solution: Using a Min-Heap

Here’s an optimized Python solution using a `heapq` module, which provides an efficient implementationHere’s an optimized Python solution using a `heapq` module, which provides an efficient implementation
of a min-heap:of a min-heap:

```python```python
import heapqimport heapq

def ad_rotation(ads):def ad_rotation(ads):
""""""
Efficiently rotates ads to ensure each receives its target impressions.Efficiently rotates ads to ensure each receives its target impressions.

                               2 / 6                               2 / 6



Ad Rotation Hackerrank SolutionAd Rotation Hackerrank Solution
  

Args:Args:
ads: A list of tuples, where each tuple represents an ad (ad_id, impressions_needed).ads: A list of tuples, where each tuple represents an ad (ad_id, impressions_needed).

Returns:Returns:
A list of ad IDs in the order they should be displayed.A list of ad IDs in the order they should be displayed.
""""""

# Create a min-heap using a list of tuples (impressions_needed, ad_id)# Create a min-heap using a list of tuples (impressions_needed, ad_id)
heap = [(impressions, ad_id) for ad_id, impressions in ads]heap = [(impressions, ad_id) for ad_id, impressions in ads]
heapq.heapify(heap)heapq.heapify(heap)
result = []result = []

while heap:while heap:
impressions, ad_id = heapq.heappop(heap)impressions, ad_id = heapq.heappop(heap)
result.append(ad_id)result.append(ad_id)
impressions -= 1 #Decrement impressions after displayimpressions -= 1 #Decrement impressions after display

if impressions > 0:if impressions > 0:
heapq.heappush(heap,(impressions, ad_id)) #Add back if impressions still neededheapq.heappush(heap,(impressions, ad_id)) #Add back if impressions still needed

return resultreturn result

# Example usage:# Example usage:
ads = [(1, 5), (2, 3), (3, 2)]ads = [(1, 5), (2, 3), (3, 2)]
rotated_ads = ad_rotation(ads)rotated_ads = ad_rotation(ads)

                               3 / 6                               3 / 6



Ad Rotation Hackerrank SolutionAd Rotation Hackerrank Solution
  

print(f"Optimized Ad Rotation Order: {rotated_ads}")print(f"Optimized Ad Rotation Order: {rotated_ads}")

``````

This code efficiently utilizes the min-heap to prioritize ads with fewer remaining impressions, ensuringThis code efficiently utilizes the min-heap to prioritize ads with fewer remaining impressions, ensuring
fairness and optimal ad delivery. The `heapq` module significantly improves the performance comparedfairness and optimal ad delivery. The `heapq` module significantly improves the performance compared
to naive solutions.to naive solutions.

Time and Space Complexity AnalysisTime and Space Complexity Analysis

The time complexity of this solution is O(N log N), where N is the total number of impressions across allThe time complexity of this solution is O(N log N), where N is the total number of impressions across all
ads. This is due to the heap operations (insertion and deletion). The space complexity is O(N) in the worstads. This is due to the heap operations (insertion and deletion). The space complexity is O(N) in the worst
case, primarily due to storing the ads in the heap. This optimized approach significantly outperforms brute-case, primarily due to storing the ads in the heap. This optimized approach significantly outperforms brute-
force methods, particularly with a large number of ads and impressions.force methods, particularly with a large number of ads and impressions.

Handling Edge Cases and Error ConditionsHandling Edge Cases and Error Conditions

Robust code should handle potential edge cases. For example, the code should gracefully handleRobust code should handle potential edge cases. For example, the code should gracefully handle
scenarios with zero impressions needed for an ad or an empty input list. Adding checks for thesescenarios with zero impressions needed for an ad or an empty input list. Adding checks for these
conditions enhances the solution's reliability and prevents unexpected errors.conditions enhances the solution's reliability and prevents unexpected errors.

 4 / 6 4 / 6

Ad Rotation Hackerrank SolutionAd Rotation Hackerrank Solution

Further Optimizations and Advanced TechniquesFurther Optimizations and Advanced Techniques

While the min-heap approach is highly efficient, further optimizations might be explored depending on theWhile the min-heap approach is highly efficient, further optimizations might be explored depending on the
specific constraints of the HackerRank problem. For instance, if the problem involves additionalspecific constraints of the HackerRank problem. For instance, if the problem involves additional
constraints like ad frequency capping, more sophisticated algorithms or data structures might beconstraints like ad frequency capping, more sophisticated algorithms or data structures might be
necessary.necessary.

ConclusionConclusion

Solving the HackerRank Ad Rotation problem efficiently requires a strategic approach involvingSolving the HackerRank Ad Rotation problem efficiently requires a strategic approach involving
appropriate data structures and algorithms. By using a min-heap (as implemented with Python's `heapq`),appropriate data structures and algorithms. By using a min-heap (as implemented with Python's `heapq`),
we achieve a solution with optimal time and space complexity, handling a large number of ads andwe achieve a solution with optimal time and space complexity, handling a large number of ads and
impressions effectively. Understanding the core logic and utilizing efficient data structures are key toimpressions effectively. Understanding the core logic and utilizing efficient data structures are key to
success in this and similar algorithmic challenges.success in this and similar algorithmic challenges.

 5 / 6 5 / 6

Ad Rotation Hackerrank SolutionAd Rotation Hackerrank Solution

FAQsFAQs

1. What if an ad has zero impressions needed? The code handles this gracefully; it simply won't add the1. What if an ad has zero impressions needed? The code handles this gracefully; it simply won't add the
ad to the heap, and it won't be included in the rotation order.ad to the heap, and it won't be included in the rotation order.

2. Can this solution be adapted for other programming languages? Yes, the core logic can be2. Can this solution be adapted for other programming languages? Yes, the core logic can be
implemented in most programming languages that offer equivalent data structures (priority queues orimplemented in most programming languages that offer equivalent data structures (priority queues or
heaps).heaps).

3. How does the min-heap improve performance compared to a simple list? A min-heap allows for O(log N)3. How does the min-heap improve performance compared to a simple list? A min-heap allows for O(log N)
insertion and deletion, whereas searching for the ad with the minimum remaining impressions in a simpleinsertion and deletion, whereas searching for the ad with the minimum remaining impressions in a simple
list would be O(N). This difference is crucial for large datasets.list would be O(N). This difference is crucial for large datasets.

4. What if the input data is invalid (e.g., negative impressions)? Robust code should include input4. What if the input data is invalid (e.g., negative impressions)? Robust code should include input
validation to handle such cases, potentially raising exceptions or returning error messages.validation to handle such cases, potentially raising exceptions or returning error messages.

5. Are there other algorithms that could solve this problem? While the min-heap approach is efficient,5. Are there other algorithms that could solve this problem? While the min-heap approach is efficient,
other algorithms could be considered, such as variations of greedy algorithms, but they might not achieveother algorithms could be considered, such as variations of greedy algorithms, but they might not achieve
the same level of performance.the same level of performance.

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

 6 / 6 6 / 6

http://www.tcpdf.org
http://www.tcpdf.org

